ANP - definitie. Wat is ANP
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is ANP - definitie

Framatome ANP; AREVA NP; AREVA; Areva

ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ         
  • ТРДД Rolls-Royce Pegasus поворотные сопла которого позволяют осуществлять вертикальные взлет и посадку. Устанавливается на самолёте Harrier.
  •  Регулируемое сопло ТРДФ АЛ-21 регулируемые створки максимально закрыты
  • Боинг-747]]
  • Бладхаунд]]». Хорошо видны входное устройство и вход в камеру сгорания
  •  Регулируемое сопло ТРДДФ F-100 самолёта F-16 створки максимально открыты
  • Первый турбореактивный самолёт [[Heinkel He 178]].
  • Форсажная камера ТРД [[General Electric J79]]. Вид со стороны сопла. В торце находится ''стабилизатор горения'' с установленными на нём топливными форсунками, за которым видна турбина.
  • Отклоняемые створки сопла с ОВТ.
  • ТРД J85 производства компании General Electric. Между 8 ступенями компрессора и 2 ступенями турбины расположена кольцевая камера сгорания.
  • Двигатель [[Jumo-004]] — первый в мире крупносерийный ТРД
  • Зависимость полётного КПД от отношения <math>\frac {c}{v}</math>
  • 0}}: <br />1. Забор воздуха<br /> 2. Компрессор низкого давления<br />3. Компрессор высокого давления<br /> 4. Камера сгорания<br /> 5. Расширение рабочего тела в турбине и сопле<br /> 6. Горячая зона;<br /> 7. Турбина <br /> 8. Зона входа первичного воздуха в камеру сгорания <br /> 9. Холодная зона<br /> 10. Входное устройство
  • Leduc 010 первый аппарат, летавший с ПВРД (Музей в Ле Бурже). Первый полёт — 19 ноября 1946
  • Беспилотный разведчик [[Lockheed D-21]]B (США). ПВРД с осесимметричным входным устройством с центральным телом.
  • Турбовинтовой двигатель. Привод винта от вала турбины осуществляется через редуктор
  • Схема работы ПуВРД
  • 0}} на жидком топливе. <br /> 1. Встречный поток воздуха; <br /> 2. Центральное тело. <br /> 3. Входное устройство. <br /> 4. Топливная форсунка. <br /> 5. Камера сгорания. <br /> 6. Сопло. <br /> 7. Реактивная струя.
  • deadlink=no }}</ref>.
  •  Изготовление авиамодели с ПуВРД
  • 0}}. <br /> 1 — Вентилятор. <br />2 — Компрессор низкого давления. <br /> 3 — Компрессор высокого давления. <br /> 4 — Камера сгорания. <br /> 5 — Турбина высокого давления. <br /> 6 — Турбина низкого давления. <br /> 7 — Сопло. <br /> 8 — Вал ротора высокого давления. <br /> 9 — Вал ротора низкого давления.
  • #7238af}} — вал отбора мощности
  • [[Самолёт-снаряд]] с ПуВРД [[Фау-1]]. (Музейный экспонат. Надпись на фюзеляже: «Руками не трогать»)
  • Экспериментальный гиперзвуковой летательный аппарат [[X-43]] (рисунок художника)
  • center
ВИД РЕАКТИВНОГО ДВИГАТЕЛЯ
ANP (программа разработки авиационного ядерного двигателя); Винтовентиляторный двигатель; Турбовинтовентиляторный двигатель
(ВРД) , реактивный двигатель, использующий для сжатия горючего кислород атмосферного воздуха. По способу сжатия воздуха различают турбокомпрессорный (ТРД), пульсирующий (ПуВРД) и прямоточный (ПВРД) двигатели.
Воздушно-реактивный двигатель         
  • ТРДД Rolls-Royce Pegasus поворотные сопла которого позволяют осуществлять вертикальные взлет и посадку. Устанавливается на самолёте Harrier.
  •  Регулируемое сопло ТРДФ АЛ-21 регулируемые створки максимально закрыты
  • Боинг-747]]
  • Бладхаунд]]». Хорошо видны входное устройство и вход в камеру сгорания
  •  Регулируемое сопло ТРДДФ F-100 самолёта F-16 створки максимально открыты
  • Первый турбореактивный самолёт [[Heinkel He 178]].
  • Форсажная камера ТРД [[General Electric J79]]. Вид со стороны сопла. В торце находится ''стабилизатор горения'' с установленными на нём топливными форсунками, за которым видна турбина.
  • Отклоняемые створки сопла с ОВТ.
  • ТРД J85 производства компании General Electric. Между 8 ступенями компрессора и 2 ступенями турбины расположена кольцевая камера сгорания.
  • Двигатель [[Jumo-004]] — первый в мире крупносерийный ТРД
  • Зависимость полётного КПД от отношения <math>\frac {c}{v}</math>
  • 0}}: <br />1. Забор воздуха<br /> 2. Компрессор низкого давления<br />3. Компрессор высокого давления<br /> 4. Камера сгорания<br /> 5. Расширение рабочего тела в турбине и сопле<br /> 6. Горячая зона;<br /> 7. Турбина <br /> 8. Зона входа первичного воздуха в камеру сгорания <br /> 9. Холодная зона<br /> 10. Входное устройство
  • Leduc 010 первый аппарат, летавший с ПВРД (Музей в Ле Бурже). Первый полёт — 19 ноября 1946
  • Беспилотный разведчик [[Lockheed D-21]]B (США). ПВРД с осесимметричным входным устройством с центральным телом.
  • Турбовинтовой двигатель. Привод винта от вала турбины осуществляется через редуктор
  • Схема работы ПуВРД
  • 0}} на жидком топливе. <br /> 1. Встречный поток воздуха; <br /> 2. Центральное тело. <br /> 3. Входное устройство. <br /> 4. Топливная форсунка. <br /> 5. Камера сгорания. <br /> 6. Сопло. <br /> 7. Реактивная струя.
  • deadlink=no }}</ref>.
  •  Изготовление авиамодели с ПуВРД
  • 0}}. <br /> 1 — Вентилятор. <br />2 — Компрессор низкого давления. <br /> 3 — Компрессор высокого давления. <br /> 4 — Камера сгорания. <br /> 5 — Турбина высокого давления. <br /> 6 — Турбина низкого давления. <br /> 7 — Сопло. <br /> 8 — Вал ротора высокого давления. <br /> 9 — Вал ротора низкого давления.
  • #7238af}} — вал отбора мощности
  • [[Самолёт-снаряд]] с ПуВРД [[Фау-1]]. (Музейный экспонат. Надпись на фюзеляже: «Руками не трогать»)
  • Экспериментальный гиперзвуковой летательный аппарат [[X-43]] (рисунок художника)
  • center
ВИД РЕАКТИВНОГО ДВИГАТЕЛЯ
ANP (программа разработки авиационного ядерного двигателя); Винтовентиляторный двигатель; Турбовинтовентиляторный двигатель
(ВРД)

Реактивный двигатель, в котором для сжигания горючего используется кислород, содержащийся в атмосферном воздухе. ВРД приводит в движение летательные аппараты (самолёты, вертолёты, самолёты-снаряды). Сила тяги в ВРД возникает в результате истечения рабочих газов из реактивного сопла. Для получения большой скорости истечения газов из сопла воздух, поступающий в камеру сгорания ВРД, подвергается сжатию. В зависимости от способа сжатия воздуха ВРД делятся на турбокомпрессорные (ТРД), пульсирующие (ПуВРД) и прямоточные (ПВРД).

Турбокомпрессорные ВРД (ТРД) имеют компрессор с приводом от газовой турбины, что позволяет независимо от скорости полёта создавать сжатие воздуха, обеспечивающее большие скорости истечения газов из выходного (реактивного) сопла и большую силу тяги. ТРД широко применяется на самолётах, вертолётах, беспилотных самолётах-снарядах. ТРД можно устанавливать на катерах, гоночных автомобилях, аппаратах на воздушной подушке и др. (см. Турбокомпрессорный двигатель).

Пульсирующий ВРД (ПуВРД) имеет (рис. 1) входной диффузор (для сжатия воздуха под влиянием кинетической энергии набегающего потока), отделённый от камеры сгорания входными клапанами, и длинное цилиндрическое выходное сопло. Горючее и воздух подаются в камеру сгорания периодически. При сгорании смеси давление в камере повышается, так как клапаны на входе автоматически закрываются, а столб газов в длинном сопле обладает инерцией. Газы под давлением с большой скоростью вытекают из сопла, создавая силу тяги. К концу процесса истечения давление в камере сгорания падает ниже атмосферного, клапаны автоматически открываются и в камеру поступает свежий воздух, впрыскивается топливо; цикл работы двигателя повторяется. ПуВРД способен создавать тягу на месте и при небольших скоростях полёта. Когда клапаны закрыты, ПуВРД имеет большое аэродинамическое сопротивление по сравнению с другими типами ВРД, небольшую тягу и используется лишь для аппаратов со скоростью полёта меньше звуковой.

В прямоточном ВРД (ПВРД) во входном диффузоре (рис. 2) воздух сжимается за счёт кинетической энергии набегающего потока воздуха. Процесс работы непрерывен, поэтому стартовая тяга у ПВРД отсутствует. При скоростях полёта ниже половины скорости звука (ниже 500 км/ч) повышение давления воздуха в диффузоре незначительно, поэтому получаемая сила тяги мала. В связи с этим при скоростях полёта, соответствующих М < 0,5 (где М - число Маха, см. М-число), ПВРД не применяется; при М = 3 (скорость полёта около 3000 км/ч) давление в камере сгорания повышается примерно в 25 раз. ПВРД могут работать как на химическом (керосин, бензин и др.), так и на атомном горючем. При установке ПВРД на самолётах с меняющейся скоростью полёта, например на истребителях-перехватчиках, входное устройство должно иметь регулируемые размеры и изменяемую форму для наилучшего использования скоростного напора набегающего потока воздуха. Реактивное сопло также должно иметь регулируемые размеры и форму. Взлёт самолёта-перехватчика с ПВРД производится при помощи ракетных двигателей (на жидком или твёрдом топливе) и только после достижения скорости полёта, при которой воздух в диффузоре имеет достаточно высокое давление, начинает работу ПВРД. Основные преимущества ПВРД: способность работать на значительно больших скоростях и высотах полёта, чем ТРД; большая экономичность по сравнению с жидкостными ракетными двигателями (ЖРД), так как в ПВРД используется кислород воздуха, а в ЖРД кислород вводится в виде одного из компонентов топлива, транспортируемого вместе с двигателем; отсутствие движущихся частей и простота конструкции. Главные недостатки ПВРД: отсутствие статической (стартовой) тяги, что требует принудительного старта; малая экономичность при дозвуковых скоростях полёта. Применение ПВРД наиболее эффективно для полёта с большими сверхзвуковыми скоростями. ПВРД со сверхзвуковой скоростью сгорания топлива (в камере сгорания) называется гиперзвуковым прямоточным воздушно-реактивным двигателем (ГПВРД). Его применение целесообразно на летательных аппаратах при скоростях полёта, соответствующих М = 5-6. Области применения различных типов двигателей показаны на рис. 3.

Лит.: Бондарюк М. М., Ильяшенко С. М., Прямоточные воздушно-реактивные двигатели, М., 1958.

Г. С. Скубачевский.

Рис. 1. Схема пульсирующего воздушно-реактивного двигателя (ПуВРД): 1 - воздух; 2 - горючее; 3 - клапанная решётка; 4 - форсунки; 5 - свеча; 6 - камера сгорания; 7 - выходное (реактивное) сопло.

Рис. 2. Схема прямоточного воздушно-реактивного двигателя (ПВРД): 1 - воздух; 2 - диффузор; 3 - впрыск горючего; 4 - стабилизатор пламени; 5 - камера сгорания; 6 - сопло; 7 - истечение газов.

Рис. 3. Области применения двигателей различных типов в зависимости от скорости полёта: H - высота полёта; М - число Маха; 1 - турбореактивные двигатели; 2 - турбореактивные двигатели с форсажной камерой; 3 - прямоточные воздушно-реактивные двигатели.

Воздушно-реактивный двигатель         
  • ТРДД Rolls-Royce Pegasus поворотные сопла которого позволяют осуществлять вертикальные взлет и посадку. Устанавливается на самолёте Harrier.
  •  Регулируемое сопло ТРДФ АЛ-21 регулируемые створки максимально закрыты
  • Боинг-747]]
  • Бладхаунд]]». Хорошо видны входное устройство и вход в камеру сгорания
  •  Регулируемое сопло ТРДДФ F-100 самолёта F-16 створки максимально открыты
  • Первый турбореактивный самолёт [[Heinkel He 178]].
  • Форсажная камера ТРД [[General Electric J79]]. Вид со стороны сопла. В торце находится ''стабилизатор горения'' с установленными на нём топливными форсунками, за которым видна турбина.
  • Отклоняемые створки сопла с ОВТ.
  • ТРД J85 производства компании General Electric. Между 8 ступенями компрессора и 2 ступенями турбины расположена кольцевая камера сгорания.
  • Двигатель [[Jumo-004]] — первый в мире крупносерийный ТРД
  • Зависимость полётного КПД от отношения <math>\frac {c}{v}</math>
  • 0}}: <br />1. Забор воздуха<br /> 2. Компрессор низкого давления<br />3. Компрессор высокого давления<br /> 4. Камера сгорания<br /> 5. Расширение рабочего тела в турбине и сопле<br /> 6. Горячая зона;<br /> 7. Турбина <br /> 8. Зона входа первичного воздуха в камеру сгорания <br /> 9. Холодная зона<br /> 10. Входное устройство
  • Leduc 010 первый аппарат, летавший с ПВРД (Музей в Ле Бурже). Первый полёт — 19 ноября 1946
  • Беспилотный разведчик [[Lockheed D-21]]B (США). ПВРД с осесимметричным входным устройством с центральным телом.
  • Турбовинтовой двигатель. Привод винта от вала турбины осуществляется через редуктор
  • Схема работы ПуВРД
  • 0}} на жидком топливе. <br /> 1. Встречный поток воздуха; <br /> 2. Центральное тело. <br /> 3. Входное устройство. <br /> 4. Топливная форсунка. <br /> 5. Камера сгорания. <br /> 6. Сопло. <br /> 7. Реактивная струя.
  • deadlink=no }}</ref>.
  •  Изготовление авиамодели с ПуВРД
  • 0}}. <br /> 1 — Вентилятор. <br />2 — Компрессор низкого давления. <br /> 3 — Компрессор высокого давления. <br /> 4 — Камера сгорания. <br /> 5 — Турбина высокого давления. <br /> 6 — Турбина низкого давления. <br /> 7 — Сопло. <br /> 8 — Вал ротора высокого давления. <br /> 9 — Вал ротора низкого давления.
  • #7238af}} — вал отбора мощности
  • [[Самолёт-снаряд]] с ПуВРД [[Фау-1]]. (Музейный экспонат. Надпись на фюзеляже: «Руками не трогать»)
  • Экспериментальный гиперзвуковой летательный аппарат [[X-43]] (рисунок художника)
  • center
ВИД РЕАКТИВНОГО ДВИГАТЕЛЯ
ANP (программа разработки авиационного ядерного двигателя); Винтовентиляторный двигатель; Турбовинтовентиляторный двигатель
Воздушно-реактивный двигатель (ВРД) — тепловой реактивный двигатель, рабочим телом которого является смесь атмосферного воздуха и продуктов сгорания топлива. При сгорании топлива рабочее тело нагревается и, расширяясь, истекает из двигателя с большой скоростью, создавая реактивную тягу.

Wikipedia

Orano

Оrano S. A. (до 2018 года — Areva S. A.) — крупная международная французская промышленная компания, лидер атомной промышленности Франции. Переименование было произведено после того, как Areva оказалась на грани банкротства.

При этом, юридическое лицо "Areva S.A." было сохранено. Его основная функция – финансовое сопровождение группы на переходный период и исполнение ранее заключенных контрактов, в частности по строительству третьего энергоблока АЭС Олкилуото в Финляндии. Для этого была произведена дополнительная эмиссия акций, которая была выкуплена за 2 млрд евро французским государством.

Основные направления деятельности ОRANO S. A. связаны с ядерной энергетикой: добыча урана, переработка и обогащение урана, изготовления топливных сборок (ТВС), транспортировка ядерного топлива, обращение с радиоактивными отходами, переработка отработавшего ядерного топлива, вывод из эксплуатации ядерных объектов.

Вплоть до лета 2016 года Areva была единственной западной компанией, которая была представлена во всех видах деятельности, связанной с производством ядерной энергии. Кроме этого, она занималась разработкой и производством оборудования для электрогенерации из альтернативных и возобновляемых источников.

После реорганизации, которая продлилась полтора года, деятельность группы была переориентирована на работу исключительно вокруг ядерного топливного цикла.

Основным производственным филиалом Orano стало предприятие Orano Cycle (бывшая Areva NC).

Штаб-квартира компании находится в Курбевуа, Париж.

Voorbeelden uit tekstcorpus voor ANP
1. ANP на условиях концессии на тендере распределило 27 месторождений.
2. В ведении ANP также находится Банк данных по разведке и разработке. [RR] Б1
3. - Возмутительно, что ФИФА не дает нам больше билетов, - заявил ANP председатель клуба поддержки "Оранжевых" Ллойд ван ден Берг.
4. Во-первых, для контроля над ситуацией, во-вторых, для тренировки, обучения и повышения профессионализма ANP и ANA.
5. ОБ АГЕНТСТВЕ Национальное нефтяное агентство Бразилии (ANP) было создано в 1''8 г., регулирует нефтегазовый бизнес в Бразилии.
Wat is ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ - definition